Centralized versus Decentralized Provision of Local Public Goods: A Political Economy Approach By: Timothy Besley and Stephen Coate

David Simpson

Columbia University: POLS 8211 PE of Institutions Professor: Dr. Michael Ting

February 14, 2020

Simpson (Columbia: GR 8211)

Besley & Coate J Pub E (2003)

Outline

- 1. Introduction
 - Public Goods and Fiscal Federalism
- 2. Framework

3. Standard Approach

- First Best
- Second Best with Decentralization
- Second Best with Centralization
- Public Surplus Comparison
- 4. Political Economy Approach
 - Decentralization
 - Centralization, Non-Cooperative Legislature
 - Public Surplus Comparison
- 5. Conclusions

1. Introduction

Research Question

• Which level of government should provide public goods?

Motivating Examples

- MTA: Should state or cities run and operate buses and subway?
- Highways: Should federal government or states pay for highways?
- Other goods: How much should cities spend on parks and libraries?

Important Concepts

- Federalism: Centralized and decentralized govts. share jurisdiction
- Public Goods: Nonexcludable and Nonrivalrous
- Externality: + (-) spillovers result in under (over) production
- Fiscal Federalism: The study of a public sector that taxes and produces public goods at different levels of government.

- 4 回 ト - 4 回 ト

1. Introduction: Public Goods and Fiscal Federalism

- Decentralization: Theory of Local Public Goods, Tiebout (1956)
 - City competition for residents leads to optimal public good provision
 - Residents sort according to preferred combination of public goods
 - Requires several assumptions including no externalities
- Fiscal Federalism: Standard Approach, Oates (1972)
 - ▶ Analyzes centralized and decentralized provision with (+) externalities
 - Decentralization: Fails to internalize spillovers (coordination failure)
 - Centralization: Uniform provision (preference matching failure)
- Fiscal Federalism: PE Approach, Besley & Coate (2003)
 - Adds legislature and relaxes uniformity assumption under centralization
 - Uncertainty: Districts unsure about amount of public good provision
 - Misallocation: Spending skews toward those in winning coalition
 - Strategic Delegation: Median differ from elected legislator's preferences

< □ > < □ > < □ > < □ > < □ > < □ >

2. Framework

Economy

- Districts
 - Two geographic districts $i \in \{1, 2\}$,
 - Each with a unit mass of non-mobile citizens with complete information
 - Each produces a local public good (e.g. parks, roads & libraries)
- Goods
 - ▶ One private: citizens endowed with $X \in \mathbb{R}^{>0}$ and consume $x \ge 0$
 - Two public: produces $g_i \ge 0$ units at cost of p units of X
- Taxes
 - Uniform head tax: τ_i
 - Decentralized Govts: produce one good and tax $\tau_i = pg_i$
 - Centralized Govt: produces two goods and taxes $\tau_i = p(g_1 + g_2)/2$
- Externalities
 - Public goods exhibit (+) spillovers indexed by $k \in [0, \frac{1}{2}]$
 - k = 0 citizens care about goods in own district only
 - $k = \frac{1}{2}$ citizens care about goods in both districts equally

2. Framework, cont

Citizens

- Types
 - Taste preference parameter for public goods $\lambda \sim [0, \overline{\lambda}]$
 - In each district *i* median $m_i = \mathbb{E}[\lambda]$
 - Preferences over $[0, \overline{\lambda}]$ are single peaked
 - Assumptions: $m_1 \geq m_2$ and $2m_1 < ar{\lambda}$
- Quasi-linear Utility

$$x + \lambda[(1-k) \ln g_i + k \ln g_{-i}]$$

Budget Constraint

$$X \ge x + \tau_i$$

Besley & Coate J Pub E (2003)

3. Standard Approach

Extensive Form

- 1. Nature chooses distribution of public goods tastes, λ , in each district *i*
- 2. Government chooses public good level(s) according to median voter(s)

Three Systems

- 1. First Best: Social Planner
 - Internalizes spillovers
 - Differentially sets public good levels
- 2. Second Best: Two Decentralized Governments
 - Does not internalize spillovers (Coordination Failure)
 - Matches local production to local preferences
- 3. Second Best: One Centralized Government
 - Uniform allocation imperfectly internalizes spillovers
 - Allocation does not vary with spillovers (*Preference Matching Failure*)

3. Standard Approach: First Best

Social Planner

• Internalizes Individual Maximization Problems

 $\begin{array}{rcl} u_1(x_1,g_1,g_2) &=& x_1+m_1[(1-k)\,\ln g_1+k\,\ln g_2]+\mu_1[X_1-x_1-\tau_1]\\ u_2(x_2,g_1,g_2) &=& x_2+m_2[(1-k)\,\ln g_2+k\,\ln g_1]+\mu_2[X_2-x_2-\tau_2] \end{array}$

- Sum the utility functions
- Can restrict choice variables to g_i (u_i is linear in $x_i \Rightarrow \mu_i = 1$)
- Regardless of underlying political system, $\tau_1 + \tau_2 = p(g_1 + g_2)$
- Aggregate Public Good Surplus Problem

$$g_i^s = \underset{g_i}{\operatorname{arg\,max}} [m_1(1-k) + m_2k] \ln g_1 + [m_2(1-k) + m_1k] \ln g_2 - p(g_1 + g_2)$$

(4) (日本)

3. Standard Approach: First Best, continued

Extensive Form

- 1. Nature chooses distribution of public goods tastes, λ , in each district *i*
- 2. Social Planner chooses public good levels according to m_1 and m_2

$$g_i^s = \arg \max_{g_i} [m_1(1-k) + m_2k] \ln g_1 + [m_2(1-k) + m_1k] \ln g_2 - p(g_1 + g_2)$$

$$(g_1^s, g_2^s) = \left(\frac{m_1(1-k) + m_2k}{p}, \frac{m_2(1-k) + m_1k}{p}\right)$$

- Result: Optimal Allocation
 - Each district *i* fully internalizes external benefit to district -i
 - Each district allocation matches preferences of local citizens

3. Standard Approach: Second Best with Decentralization

Extensive Form

- 1. Nature chooses distribution of public goods tastes, λ , in each district *i*
- 2. Each district government i chooses public good level according to m_i

$$g_i^d = \underset{g_i}{\operatorname{argmax}} m_i[(1-k)\ln g_i + k\ln g_{-i}^d] - pg_i$$
$$(g_1^d, g_2^d) = \left(\frac{m_1(1-k)}{p}, \frac{m_2(1-k)}{p}\right)$$

- Result: Coordination Failure
 - Spillovers k > 0 to public goods leads to underproduction of g_i
 - District *i* fails to account for benefits to district -i citizens

$$g_i^d = rac{m_i(1-k)}{p} < rac{m_i(1-k) + m_{-i}k}{p} = g_i^s, \ \forall k > 0$$

3. Standard Approach: Second Best with Centralization

Extensive Form

- 1. Nature chooses distribution of public goods tastes, λ , in each district *i*
- 2. Central govt. chooses uniform public good level according to $m_1 \& m_2$

$$g^c = \operatorname*{argmax}_g [m_1 + m_2] \operatorname{ln} g - 2pg$$

 $(g_1^c, g_2^c) = \left(\frac{m_1 + m_2}{2p}, \frac{m_1 + m_2}{2p}
ight)$

• Result: Preference Matching Failure

- ▶ Identical Districts $(m_1 = m_2)$: allocation matches social planner
- ▶ Nonidentical Districts $(m_1 > m_2)$: $g_i^c \in (g_2^s, g_1^s) \forall k < \frac{1}{2}$

$$\frac{m_1+m_2}{2p} \in \Big(\frac{m_2(1-k)+m_1k}{p}, \frac{m_1(1-k)+m_2k}{p}\Big), \ k < \frac{1}{2}, \ m_1 > m_2$$

3. Standard Approach: Public Surplus Comparison

Surplus Functions

$$S^{d}(k) = \sum_{i \in \{1,2\}} \left\{ [m_{i}(1-k) + m_{-i}k] \ln \frac{m_{i}(1-k)}{p} - m_{i}(1-k) \right\}$$

$$S^{c}(k) = [m_{1} + m_{2}] \ln \frac{m_{1} + m_{2}}{2p} - m_{1} - m_{2}$$

Proposition 1

- Identical Districts $(m_1 = m_2)$
 - Spillovers (k > 0): $S^c(k) > S^d(k)$
 - No Spillovers (k = 0): $S^{c}(k) = S^{d}(k)$
- Non-identical Districts ($m_1 > m_2$)
 - Small Spillovers ($\forall k \text{ s.t. } k < k'$): $S^{c}(k) < S^{d}(k)$
 - ► Large Spillovers ($\forall k \text{ s.t. } k \ge k'$): $S^{c}(k) \ge S^{d}(k)$

Proof: $\exists k' \in (0, 1/2) \text{ st } S^{c}(k) \ge (<)S^{d}(k) \text{ for all } k \ge (<)k'$ • $S^{c}(0) < S^{d}(0) \text{ and } S^{c}(1/2) > S^{d}(1/2)$ • $\partial S^{d}(k)/\partial k < 0$

4. Political Economy Approach

- Question
 - Is uniformity realistic or necessary for suboptimal centralization?
- Argument
 - Non-identical legislators can produce suboptimal allocations
- New Features
 - Legislatures: Determine public good allocations
 - Simultaneous Elections: Citizen candidates elect legislators
 - Bargaining: Legislators ex-ante bargain over a single period allocation

New Concepts

- Uncertainty: Districts unsure about amount of public good provision
- Misallocation: Spending skews toward those in winning coalition
- Strategic Delegation: Median differ from elected legislator's preferences

・ 何 ト ・ ヨ ト ・ ヨ ト

4. Political Economy Approach, continued

Three Systems

- 1. Two Decentralized Legislators
 - Bargaining: None. Legislator *i* benevolently sets policy in district *i*
 - Preference matching with coordination failure
- 2. One Centralized Non-Cooperative Legislature
 - Bargaining: Baron and Ferejohn (1989) "style" in single period
 - Imperfectly matches preferences and internalizes spillovers
 - Ex-ante, districts unsure about final allocation (Uncertainty)
 - Ex-post, allocation skewed toward winning coalition (*Missallocation*)
 - Potential Critique: Do we care about ex-ante or ex-post allocations?
- 3. One Centralized Cooperative Legislature
 - Bargaining: Utilitarian Bargaining Solution
 - Imperfectly matches preferences and internalizes spillovers
 - Median incentivized to support non-median type (Strategic Delegation)

< □ > < □ > < □ > < □ > < □ > < □ >

4. Political Economy Approach, continued

Extensive Form

- 1. Nature chooses distribution of public goods tastes, λ , in each district *i*
- 2. Districts simultaneously elect respective legislator λ_i (citizen candidate)
- 3. Government chooses public good level(s) as function of legislator type
- Equilibrium
 - Legislator Pair: $(\lambda_1^*, \lambda_2^*)$
 - Policy allocation: (g_1, g_2)
- Backwards Induction
 - Policy Stage
 - Representatives set policy to maximize their public goods surplus
 - Where allocations are functions of legislator type: $g_i = f_i(\lambda_1, \lambda_2)$
 - Election Stage
 - District *i* voters pick legislator λ_i to maximize their public good surplus

- 4 回 ト 4 ヨ ト 4 ヨ ト

4. PE Approach: Decentralization

Extensive Form

- 1. Nature chooses distribution of public goods tastes, λ , in each district i
- 2. Districts simultaneously elect respective legislator λ_i (citizen candidate)
- 3. Legislator λ_i chooses public good level g_i as function of legislator type
- Policy Stage
 - Legislator λ_i solves district *i*'s maximization problem.
 - λ_i takes $g_{-i}(\lambda_{-i})$ as given.

$$g_i(\lambda_i) = \underset{g_i}{\arg \max} \lambda_i[(1-k) \ln g_i] + k \ln g_{-i}(\lambda_{-i})] - pg_i$$
$$(g_1(\lambda_1), g_2(\lambda_2)) = \left(\frac{\lambda_1(1-k)}{p}, \frac{\lambda_2(1-k)}{p}\right)$$

4. PE Approach: Decentralization, continued

- Election Stage
 - ▶ District *i* citizens with type $\lambda \in [0, \overline{\lambda}]$ face public good surplus:

$$\lambda \Big[(1-k) \ln rac{\lambda_i (1-k)}{p} + k \ln rac{\lambda_{-i} (1-k)}{p} \Big] - \lambda_i (1-k)$$

- Type λ citizens pick λ_i to maximize surplus
- Median Voter Argument
 - Citizen type λ has single peaked preferences over types $\lambda'_i, \lambda_i \in [0, \overline{\lambda}]$
 - If $\lambda'_i > \lambda_i > \lambda$, then type λ prefers λ_i
 - If $\lambda'_i < \lambda_i < \lambda$, then type λ prefers λ_i
 - Thus m_i will be majority preferred to any $\lambda_i \neq m_i$
- Equilibrium
 - Legislator Pair: $(\lambda_1^*,\lambda_2^*) = (m_1,m_2)$
 - Policy Allocation: Same as decentralization in standard approach

$$(g_1,g_2)=(rac{m_1(1-k)}{p},rac{m_2(1-k)}{p})$$

4. PE Approach: Centralization, Non-cooperative Leg.

Extensive Form

- 1. Nature chooses distribution of public goods tastes, λ , in each district i
- 2. Districts simultaneously elect respective legislator λ_i (citizen candidate)
- 3. Via bargaining, λ_i chooses (g_1, g_2) as function of own type with $pr = \frac{1}{2}$
- Policy Stage
 - Legislator λ_i forms a minimum winning coalition with pr = 1/2
 - λ_i solves district *i*'s maximization problem, but chooses g_i and g_{-i}

$$(g_1^i(\lambda_i),g_2^i(\lambda_i)) = rgmax_{g_i,g_{-i}} \lambda_i [(1-k) lng_i + k lng_{-i}(\lambda_{-i})] - rac{p}{2}(g_i + g_{-i})$$

$$(g_1^i(\lambda_i),g_2^i(\lambda_i))=\Big(rac{2\lambda_i(1-k)}{p},rac{2\lambda_i k}{p}\Big),\quad i\in\{1,2\}$$

4. PE Approach: Centralization, Non-coop Leg., cont.

Election Stage

▶ District *i* citizen of type $\lambda \in [0, \overline{\lambda}]$ receives public good surplus:

$$\frac{1}{2} \left[\lambda \left[(1-k) \ln \frac{2\lambda_i(1-k)}{p} + k \ln \frac{2\lambda_i k}{p} \right] - \lambda_i \right] \\ + \lambda \left[(1-k) \ln \frac{2\lambda_{-i} k}{p} + k \ln \frac{2\lambda_{-i}(1-k)}{p} \right] - \lambda_{-i} \right]$$

- Type λ citizens pick λ_i to maximize surplus
- Median Voter Argument implies majority prefers m_i
- Equilibrium
 - Legislator Pair: $(\lambda_1^*,\lambda_2^*) = (m_1,m_2)$
 - Policy Allocation:

$$(g_1, g_2) = (\frac{2m_1(1-k)}{p}, \frac{2m_1k}{p})$$
 with prob. 1/2
= $(\frac{2m_2k}{p}, \frac{2m_2(1-k)}{p})$ with prob. 1/2

4. PE Approach: Centralization, Non-coop Leg., cont.

- Result: Uncertainty & Misallocation
 - Identical Districts $(m_1 = m_2)$: Equivalent to planner only if $k = \frac{1}{2}$
 - Nonidentical Districts $(m_1 > m_2)$: Never equivalent to planner
 - Misallocation: Spending skewed toward those in winning coalition

	Alloca	tion (g_i, g_{-i})
k	Noncoop	Planner
0	$\left(\frac{2m_i}{p},0\right)$	$\left(\frac{m_i}{p}, \frac{m_{-i}}{p}\right)$
$\frac{1}{2}$	$\left(\frac{m_i}{p}, \frac{m_i}{p}\right)$	$\left(\frac{m_1+m_2}{2p},\frac{m_1+m_2}{2p}\right)$

- Uncertainty: Districts unsure of ex-post allocation Critique
 - Why focus on ex-post rather than ex-ante allocations?
 - If interested in long-run, ex-ante allocation may be more appropriate.

PE Approach: Public Surplus Comparison

$$S_n^c(k) = \frac{1}{2} [m_1(1-k) + m_2 k] \left(\ln \frac{2m_1(1-k)}{p} + \ln \frac{2m_2 k}{p} \right) \\ + \frac{1}{2} [m_2(1-k) + m_1 k] \left(\ln \frac{2m_2(1-k)}{p} + \ln \frac{2m_1 k}{p} \right) - m_1 - m_2$$

Proposition 2

- Identical Districts $(m_1 = m_2)$ $\exists k'' \in (0, 1/2) \text{ s.t.}$
 - Small Spillovers ($\forall k \text{ s.t. } k \leq k''$): $S_n^c(k) \leq S^d(k)$
 - Large Spillovers ($\forall k \text{ s.t. } k > k''$): $S_n^c(k) > S^d(k)$
- Non-identical Districts $(m_1 > m_2)$

 $\exists k''' \in (0, 1/2) \text{ s.t.}$

- Small Spillovers ($\forall k \text{ s.t. } k < k'''$): $S_n^c(k) < S^d(k)$
- ► Large Spillovers ($\forall k \text{ s.t. } k \ge k'''$): $S_n^c(k) \ge S^d(k)$
- ▶ k''' in Non-identical PE Approach > k' Standard Approach

4. PE Approach: Public Surplus Comparison, continued Proof Sketch

$$S_n^c(k) = \frac{1}{2} [m_1(1-k) + m_2 k] \left(\ln \frac{2m_1(1-k)}{p} + \ln \frac{2m_2 k}{p} \right) \\ + \frac{1}{2} [m_2(1-k) + m_1 k] \left(\ln \frac{2m_2(1-k)}{p} + \ln \frac{2m_1 k}{p} \right) - m_1 - m_2$$

•
$$S_n^c(\cdot)$$
 is increasing in k , since $\partial S_n^c(k)/\partial k > 0$
• $S_n^c(0) < s^d(0)$ and $S_n^c(1/2) > s^d(1/2)$
• $S_n^c(K) = S^c(k)$ for $k = 1/2$ and $S_n^c(K) < S^c(k)$ for $k < 1/2$

$$S_n^C(k) < \frac{m_1 + m_2}{2} \left[\ln \frac{m_1}{p} + \ln \frac{m_2}{p} \right] - (m_1 + m_2) = S_n^c(\frac{1}{2}) < [m_1 + m_2] \ln \frac{m_1 + m_2}{2p} - (m_1 + m_2) = S^c(k)$$

- The first line follows since $S_n^c(\cdot)$ is increasing
- The second line follows by the strict concavity of $ln(\cdot)$

•
$$\ln\left(\frac{m_1}{2p} + \frac{m_2}{2p}\right) > \frac{1}{2}\ln\frac{m_1}{p} + \frac{1}{2}\ln\frac{m_2}{2p}$$

(4 何) トイヨト イヨト

5. Conclusions

Presentation Summary

- Standard Approach
 - Identical Districts: centralization preferred for all spillover levels k > 0
 - ▶ Nonidentical Districts: centralization preferred for *k* sufficiently large
- PE Approach
 - ► Identical Districts: centralization preferred for *k* sufficiently large
 - ▶ Nonidentical Districts: centralization preferred for *k* sufficiently large

Concluding Question

• Across various public goods, are spillovers likely to be high or low?